Synchrotron tomography of a stump lizard elucidates early squamate anatomy

  • Evans, SE At the feet of the dinosaurs: the ancient history and influence of lizards. Biol. Rev. camb. Philos. Soc. 78513-551 (2003).

    Google Scholar PubMed

  • Evans, SE and Jones, MEH in New aspects of Mesozoic biodiversity (ed. Bandyopahyay, S.) 27–44 (Springer, 2010).

  • Jones, MEH et al. The integration of molecules and new fossils support a Triassic origin for Lepidosauria (lizards, snakes and tuatara). BMC Evol. Biol. 13208 (2013).

    PubMed PubMed Central Google Scholar

  • Cavicchini, I., Zaher, M. & Benton, MJ An enigmatic neodiapsid reptile from the Middle Triassic of England. J. Vertebr. Paleontol. 40e.1781143 (2020).

  • Sues, HD & Kligman, BT A new lizard-like reptile from the Upper Triassic (Carnian) of Virginia and the Triassic record of Lepidosauromorpha (Diapsida, Sauria). J. Vertebr. Paleontol. 40e1879102 (2020).

  • Skutschas, PP et al. A lepidosauromorph specimen from the Middle Jurassic (Bathonian) Moskvoretskaya Formation of the Moscow Region, Russia. Hist. Biol. 34566-570 (2021).

    Google Scholar

  • Sobral, G., Simões, TR & Schoch, RR A tiny new stem lepidosauromorph from the Middle Triassic of Germany: implications for the early evolution of lepidosauromorphs and the Vellberg fauna. Science. representing ten2273 (2020).

    ADS CAS PubMed PubMed Central Google Scholar

  • Estes, R., De Queiroz, K. & Gauthier, J. in Essays commemorating Charles L. Camp. Phylogenetic relationships of lizard families (eds Estes, R. & Pregill, G.) 119–281 (Stanford Univ. Press, 1988).

  • Townsend, TM, Larson, A., Louis, E. & Macey, JR Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. System Biol. 53735–757 (2004).

    Google Scholar PubMed

  • Vidal, N. & Hedges, SB The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. CR Biol. 3281000-1008 (2005).

    CAS PubMed Google Scholar

  • Gauthier, J., Kearney, M., Maisano, JA, Rieppel, O. & Behlke, ADB Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bull. PeabodyMus. Nat. Hist. 533–308 (2012).

    Google Scholar

  • Losos, JB, Hillis, DM & Greene, HW Who speaks with a forked tongue? Science 3381428-1429 (2012).

    ADS CAS PubMed Google Scholar

  • Burbrink, FT et al. Interrogation of genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. System Biol. 69502–520 (2020).

    CAS PubMed Google Scholar

  • Simões, TR et al. The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature 557706–709 (2018).

    ADS PubMedGoogle Scholar

  • Pyron, RA New approaches for phylogenetic inference from morphological data and total dating evidence in squamate reptiles (lizards, snakes, and amphisbaenians). System Biol. 6638–56 (2017).

    Google Scholar PubMed

  • Reynoso, V. Huehuecuetzpalli mixedcus gen. and sp. nov: a basal squamate (Reptilia) from the Lower Cretaceous of Tepexi de Rodríguez, central Mexico. Philos. Trans. R. Soc. B 353477–500 (1998).

    Google Scholar

  • Villaseñor-Amador, D., Suárez, NX & Cruz, JA Bipedalism in the Mexican albian lizard (Squamata) and type of locomotion in other Cretaceous lizards. J. South America. Earth Sci. 109103299 (2021).

    Google Scholar

  • Panciroli, E. et al. Diverse vertebrate assemblage from the Kilmaluag Formation (Bathonian, Middle Jurassic) of Skye, Scotland. Land Approx. Science. Trans. R. Soc. Edinb. 111135-156 (2020).

    CAS Google Scholar

  • Evans, SE Jurassic lizard assemblages. Rev. Paleobiology, Geneva seven55–65 (1993).

    Google Scholar

  • Evans, SE A new anguimorph lizard from the Jurassic and Lower Cretaceous of England. Paleontology 3733–49 (1994).

    Google Scholar

  • Evans, lizards of the SE Crown group (Reptilia, Squamata) from the Middle Jurassic of the British Isles. Paleontogr. Approx. A 250123-154 (1998).

    Google Scholar

  • Waldman, M. & Evans, SE Lepidosauromorphic reptiles from the Middle Jurassic of Skye. zool. J. Linn. Soc. 112135–150 (1994).

    Google Scholar

  • Griffiths, EF, Ford, DP, Benson, RBJ & Evans, SE New information about the Jurassic lepidosauromorph Marmoretta oxoniensis. Porridge. Paleontol. seven2255-2278 (2021).

    Google Scholar

  • Ford, DP, Evans, SE, Choiniere, JN, Fernandez, V. & Benson, RBJ A reassessment of the enigmatic diapsis Bleached Paliguana and the early history of Lepidosauromorpha. proc. R. Soc. B 28820211084 (2021).

    PubMed PubMed Central Google Scholar

  • Reynoso, V.-H. & Cruz, JA in Dinosaurs and other reptiles from the Mesozoic of Mexico (eds Rivera-Sylva, HE et al.) 4–44 (Indiana Univ. Press, 2014).

  • Xing, L. et al. Hummingbird-sized dinosaur from the Cretaceous period of Myanmar. Nature 579245-249 (2020).

    ADS CAS PubMed Google Scholar

  • Li, Z.-H. et al. Reanalysis of Oculudent reviews shows that it is a lizard. Vertebr. Palace. 5995-105 (2020).

    CAS Google Scholar

  • Bolet, A. et al. Unusual morphology in the Middle Cretaceous lizard Oculudent reviews. Running. Biol. 313303–3314 (2021).

    ADS CAS PubMed Google Scholar

  • Hoffstetter, R. & Gasc, J.-P. in Biology of the Reptilia Flight. 1 (eds Gans, C., d’A Bellairs, A. & Parsons, TA) 201–310 (Academic, 1969).

  • Dong, L., Wang, Y., Mou, L., Zhang, G. & Evans, SE A new Jurassic lizard from China. Geodiversitas 41623–641 (2019).

    Google Scholar

  • Conrad, JL Phylogeny and systematics of Squamates (Reptilia) based on morphology. Bull. A m. Mus. Nat. Hist. 3101–182 (2008).

    Google Scholar

  • Evans, SE to Biology of the Reptilia Flight. 20 (eds Gans. C., Gaunt, AS & Adler, K.) 1–347 (Society for the Study of Amphibians and Reptiles, 2008).

  • Moazen, M., Curtis, N., O’Higgins, P., Evans, SE, and Fagan, MJ Biomechanical assessment of evolutionary changes in the lepidosaur skull. proc. Natl Acad. Science. UNITED STATES 1068273–8277 (2009).

    ADS CAS PubMed PubMed Central Google Scholar

  • Vidal, N. & Hedges, SB The molecular evolutionary tree of lizards, snakes, and amphisbaenians. CR Biol. 332129-139 (2009).

    CAS PubMed Google Scholar

  • Wiens, JJ et al. Solve the phylogeny of lizards and snakes (Squamata) with extensive gene and species sampling. Biol. Lett. https://doi.org/10.1098/rsbl.2012.0703 (2012).

  • Panciroli, E. et al. Postcrania of Borealestes (Mammaliformes, Docodonta) and the emergence of ecomorphological diversity in early mammals. Paleontology 65e.12577 (2022).

  • Panciroli, E., Benson, RBJ & Luo, ZX The mandible and dentition of Borealestes serendipitus (Docodonta) from the Middle Jurassic of Skye, Scotland. J. Vertebr. Paleontol. 39e1621884 (2019).

  • Caldwell, MW, Nydam, RL, Palci, A. & Apesteguía, S. Oldest known snakes from the Middle Jurassic-Early Cretaceous provide insight into snake evolution. Nat. Common. 65996 (2015).

    ADS CAS PubMed Google Scholar

  • Evans, SE & Waldman, M. Small reptiles and amphibians from the Middle Jurassic of Skye, Scotland. Mus. N. Arizona Bull. 60219-226 (1996).

    Google Scholar

  • Tałanda, M. An exceptionally preserved Jurassic skink suggests that lizard diversification preceded the fragmentation of Pangea. Paleontology 61659–677 (2018).

    Google Scholar

  • Evans, SE & Barbadillo, LJ An unusual lizard (Reptilia: Squamata) from the Early Cretaceous of Las Hoyas, Spain. zool. J. Linn. Soc. 124235–265 (1998).

    Google Scholar

  • Sobral, G., Simões, TR & Schoch, RR A tiny new stem lepidosauromorph from the Middle Triassic of Germany: implications for the early evolution of lepidosauromorphs and the Vellberg fauna. Science. representing ten2273 (2020).

    ADS CAS PubMed PubMed Central Google Scholar

  • Martínez, RN, Simões, TR, Sobral, G. & Apesteguía, S. A Triassic stem lepidosaur sheds light on the origin of lizard-like reptiles. Nature 597235-238 (2021).

    ADS PubMedGoogle Scholar

  • Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice in a large model space. System Biol. 61539–542 (2012).

    PubMed PubMed Central Google Scholar

  • Heath, TA, Huelsenbeck, JP & Stadler, T. The fossilized birth-death process for consistent calibration of divergence time estimates. proc. Natl Acad. Science. UNITED STATES 111E2957–E2966 (2014).

    ADS CAS PubMed PubMed Central Google Scholar

  • Stadler, T. Time Sampling in Birth-Death Trees. J. Theor. Biol. 267396–404 (2010).

    ADS MathSciNet PubMed MATH Google Scholar

  • Carlson, KJ et al. The MH1 endocast, Australopithecus sediba. Science 3331402–1407 (2011).

    ADS CAS PubMed Google Scholar

  • Mirone, A., Brun, E., Gouillart, E., Tafforeau, P. & Kieffer, J. The PyHST2 hybrid distributed code for high-speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities. Nucl. Instrument. Physical methods. Res. B 32441–48 (2014).

    Google Scholar CAS Announcements

  • Paganin, D., Mayo, SC, Gureyev, TE, Miller, PR & Wilkins, SW Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 20633–40 (2002).

    MathSciNet CAS PubMed Google Scholar

  • Lyckegaard, A., Johnson, G. & Tafforeau, P. Correction of annular artifacts in X-ray tomographic images. Int. J. Tomogr. Sim. 181–9 (2011).

    Google Scholar

  • Comments are closed.